Integration of Security Measures and Techniques in an
Operating System

(considering OpenBSD as an example)

Igor B6hm
Institute for Information Processing
and Microprocessor Technology
University of Linz
4040 Linz, Austria
Email: igor@bytelabs.org

Abstract— This paper covers defensive security technologies
and secure programming techniques employed in the OpenBSD
operating system. Privilege separation, a secure design pattern
which is implemented in many privileged processes, is discussed
based on the network time protocol daemon OpenNTPD. After-
wards a closer look at address space and memory protection
techniques like W"X and the Stack Smashing Protector is taken.
Finally the process of gathering entropy in order to produce high
quality random numbers is discussed based on examples found
in the OpenBSD operating system.

I. INTRODUCTION

OpenBSD believes in strong security and thus has been
chosen to serve as an example for an operating system which is
implementing security measures into many areas of the system.
Their open software development model permits the OpenBSD
team to take a more uncompromising view towards increased
security than Sun, SGI, IBM, HP [5]. There is also a strong
believe in full disclosure of security problems which means
that security issues do not stay hidden from the users. The
source code is constantly audited by members of the OpenBSD
team who search for and fix software bugs. Because of this
audit process, flaws have been found in just about every area
of the system. Entire new classes of security problems have
been found and often source code, which had been audited
earlier, needs re-auditing with these new flaws in mind. Many
new ways of how to solve problems have resulted from the
audit process. Sometimes these ideas have been used before
in some random application written somewhere, but perhaps
not taken to the degree that OpenBSD does:

e stricat() and strlcpy() - size-bounded string copying and
concatenation.
« Memory protection purify
— W’X: This policy is called (W xor X) and means
that a page may be either writeable or executable,
but not both (unless application requested...)

— Randomized malloc()

— Randomized mmap()

— atexit() and stdio protection
o Privilege separation
¢ Chroot jailing
o ProPolice (SSP - StackSmashingProtector)
The goal of this paper is to take a closer look at some of
these topics, explain them in greater detail and present some
strategies for secure software development.

II. PRIVILEGE SEPARATION

A common problem many daemon processes like NTPD
(Network Time Protocol Daemon), SMTPD (Simple Mail
Transfer Protocol Daemon), HTTPD (Hyper Text Transfer Pro-
tocol Daemon) or BGPD (Border Gateway Protocol Daemon)
share with each other is that they run with extra privileges
granted to them either by the setuid or setgid bits or by the
user which has executed them (e.g. root). The reason for this
is because such programs require extra privileges at various
times throughout their lifecycle [3] (e.g. binding a socket to
a privileged port) and thus can not drop the extra privileges
permanently.

One way to solve this problem is to use privilege separation.
The concept of privilege separation is to set up two processes
where one process is solely responsible for performing all
privileged operations, and it does absolutely nothing else. The
second process is responsible for performing the remainder
of the program’s work, which does not require any extra
privileges.

Usually the two processes are closely related, which means
that they are the same program split during initialisation into
two separate processes using fork(). Right after the separation
of the two processes, the child process drops all privileges and
usually does a chroot() into some special directory which has

Parent Process
(privileged)

Request to perform

privileged operations Responses

Child Process
(unprivileged)

Process
communicating
with unprivileged

child.

Fig. 1. Privilege Separation: Data flow.

been created for it (e.g. /var/empty). As illustrated in Figure 1,
a bidirectional communications channel exists between the two
processes to allow the unprivileged process to send requests
to the privileged process and to receive the results.

By splitting the processes into a privileged and an unpriv-
ileged part, the risk of privilege escalation attacks is signifi-
cantly reduced [3]. Since the parent process will refuse to do
any operation the child does not need, there is only a small
window of attack possibilities left. The unprivileged child
usually is responsible for most of the program’s functionality
and thus stands the greatest risk of compromise, but since it
has no extra privileges of its own, an attacker does not stand
to gain much from the compromise.

A. Privilege Separation in OpenNTPD

OpenNTPD will serve as a good example for the concept of
privilege separation and a closer look at the setup of a privilege
separated daemon is taken.

During the initialisation phase, a Unix domain socket pair
is created using socketpair(), which creates two endpoints
of a connected unnamed socket. Afterwards a child process
is forked using fork() and it immediately drops all extra
privileges and chroot()’s to /var/empty. Now there is a parent
ntpd process running as root and the child ntp engine runs as
the user _ntp: ntp. The communication between the parent and
the child is established through the Unix domain socket and
a buffer- and imsg- framework is used for passing messages
between parent and child (see Figure 2).

OpenNTPD uses two message types for the communication
between the parent ntpd process and the childs ntp engine:

o IMSG_ADJTIME: ntp engine asks the parent to do call
adjtime() in order to correct the time to allow synchro-

| ntp clients or peers

ntpd
master socket
UDP *:123
- >} :
socketpair ntp engine
root IMSG_ADJTIME jailed child
IMSG_HOST DNS | /varempty _ntp:_ntp

Fig. 2. OpenNTPD privilege separated with internal message flow.

nization of the system clock. This process requires root
privileges.

o IMSG_HOST_DNS: ntp engine asks the parent to resolve

hostnames which requires access to /efc.

This demostrates that there is only a tiny fraction of code
running as root which corrects the current system time by
some offset or resolves hostnames. The rest of the implemen-
tation which is basically responsible for

« filtering replies to increase accuracy

« sending queries to all peers

« collapsing the offsets learned from each peer into a single
median offset and call adjtime()

is much more complex and runs as an unprivileged user
chrooted to a safe directory.

III. W*X - THE MECHANISM

A modern operating system defines many different access
permissions for files. Some may be executable, some writeable
and some may be readable (of course there are also combina-
tions of these permissions) and a good system administrator
knows that by giving a file the correct permissions, trouble
can be avoided. Taking a look at the operating systems address
space reveals that there are many situations where memory is
both writeable and executable (permissions = W | X) where
it does not need to be, and because of this many bugs are
exploitable.

A way to solve this permission problem would be to think
about a generic policy for the whole address space, so that
each page may either be writeable or executable, but not both
unless the application requests it. This policy is called W™X
(W xor X).

The implementation of such a policy depends on the MMU
(MemoryManagementUnit) architecture. Some architectures
like sparc, sparc64, alpha, amd64, ia64 and hppa have a per-
page X bit, whereas with the i386 architecture it already gets
tricky since there is no per-page X bit, but there is a code
segment limit which can be used to achieve the same goal.

A. WX transition on architectures with per-page X bit support

Before it is possible to take advantage of the per-page X bit,
a few process address space changes need to be done. First
a look at how static binaries look like in memory (see figure

3) must be taken, in order to see why some things have to be
moved around.

sigtramp |RWX

RWX
—/

stack segment

I stack segment RW- I

1 heap I

bss segment RW-

sigtramp R-X I

data segment RW-

text segment R-X

null page

Fig. 3. Signal trampoline separation.

The first goal is to make the stack non-executable, but in
order to achieve that, the signal trampoline (sigtramp), which
is a special piece of code providing support for invoking signal
handlers for a process, is at the top of the stack when a new
process is created, and thus has to be moved away from the
top page of the stack first. The sigtramp originally has RWX
permissions but the write permission is not necessary and thus
removed.

Taking a look at how shared libraries are mapped, reveals
more places where things can be done better. Even though
the data segments are supposed to be only RW-, they contain
objects which are RWX. An additional danger is that some
objects like GOT (shared library Global Offset Table) and PLT
(shared library Procedure Linkage Table) are writeable when
they do not need to be (see left hand side of figure 4).

In order to purify the page permissions GOT and PLT get
their own pages and become non-writeable. After this change,
the data segment has no more objects with X permissions
(see right hand side of figure 4). In order for this to work,
the runtime link editor has to be changed to cope with
these rearrangements. Finally the ELF binary which has been
mapped into memory, has no more pages which have write
and execute permissions.

B. W’X transition on architectures without per-page X bit

On architectures where the MMU does not support a per-
page X bit as on i386, other ways have to be found in order
to achieve the same goal. On i386 there is a code segment
limit which leads to a less refined range of execution. The
basic idea is to split the address space in a data and code
part. This means that there is a bordeline in the address space
above which execution doesn’t work, so whenever memory is

stack segment RW- WA X
sigtramp R-X
libc bss RW-__
libc go{ RW libc bss RW-
libe plt KWK) || tibc got R—
libcdata RW- = [= 0
libc text R-X libc data RW-
libc text R-X
Id.so bss RW-__
1d.so go{ RW
1d.so plt R@V}(N d bss AW
.so0 bss RW-
Id.so data RW- <
1d.so got R—
Id.so text R-X 1d.s0 plt R=X
f heap Id.so data RW-
Id.so text R-X
bss segment RW- A
— bss segment RW-
gol RW-]
o R@’} got R—
P plt R-X
data segment RW-
data segment RW-
text segment R-X
null page text segment R-X
null page

Fig. 4. Mapping dynamic libraries.

mapped, code is split from data and moved low, whereas data
is moved up high into the non-executable area of the address
space. With this approach it is again possible to split up a
binary in order to purify permissions to get the desired W™X
effect.

IV. STACK SMASHING PROTECTOR

The Stack Smashing Protector which has been developed at
the IBM research division in Tokio, presents some new ideas
for improving the state of the art in buffer overflow detection.
Basically the main ideas are the reordering of local variables
to place buffers after pointers to avoid the corruption of
pointers that could be used to further corrupt arbitrary memory
locations, the copying of pointers in function arguments to an
area preceding local variable buffers to prevent the corruption
of pointers that could be used to further corrupt arbitrary
memory locations, and the omission of instrumentation code
from some functions to decrease the performance overhead.

In order to fully understand the concepts of the Stack
Smashing Protector, a closer look at how a typical stack
structure is organized, after a function is called, must be taken,
and the possible kinds of attack scenarios must be classified.

string growth

arguments

return address

Frame pointer

previous frame pointer | <€——

local variables

buffer)
Stack pointer

g

stack growth

Fig. 5. Stack structure after a function is called.

The typical stack structure, after a function is called, is
shown in Figure IV with the stack pointer pointing to the
top of the stack. The C programming language uses the area
from the top of the stack in the following order:

¢ local variables,

« the previous frame pointer,

¢ the return address,

« and the arguments of the function

where the frame pointer locates the current frame and the
previous frame pointer stores the frame pointer of the caller
function.

Now let’s have a look at a simple buffer overflow example
in order to get a better understanding of the problem. The
function foo (see Figure IV) demonstrates a buffer overflow
which occurs because of the fact that the function strepy() does
not check the size of the output, thus it can copy more than 10
bytes of data to buf. What will happen is that the characters "Hi
my name”, 0x01010101, 0x02020202 and 0x03030303 will be
assigned to buf, variable, the previous frame pointer, and the
return address respectively, if we assume that 32 bit variables
are used. After the foo function finishes, it will return to it’s
caller by jumping to the address pointed to by the previous
frame pointer, but since this pointer has been overwritten
with the value 0x03030303, the function will return to that
address instead, which isn’t the caller address. If we even
further assume that malicious code is located at the address
0x03030303, it will be executed with the same privilege level
as the application.

Since it should be clear by now how buffer overflows can
be exploited, a classification of attack methods targeting the
stack can be made:

e Return address: This is the most popular attack method.
The functions return address is overwritten with an ad-
dress pointing to malicious code.

void foo()

{

long *variable;
char buf[10];

strcpy(buffer, "Hi my name111122223333");

Fig. 6. Buffer overflow example.

e Local variables: Attacking the local variables usually has
very little effect and is seldomly used.

o Argument variables: The function pointer variable is
another popular target for attacks. Assigning the function
pointer variable of an argument or a local variable to the
attack code is a typical attack method. In this case, the
vulnerable place can be found by checking the source
program.

e Previous frame pointer: Since the location of the return
address is determined by the frame pointer, and the frame
pointer is assigned to the value of the previous frame
pointer at the time of function return, it is possible for an
attacker to create a fake frame that has the return address
pointed to attack code.

A. Stack Protection Method

As described in the previous section, there are four areas
on the stack which need special attention and protection: the
location of the arguments, the return address, the previous
frame pointer and the local variables.

In order to be able to protect the first three areas from
change, a guard variable is introduced. The guard is inserted
next to the previous frame pointer and it is prior to an array,
which is the location where an attack can begin to destroy the
stack.

A random value is chosen for the guard variable at the
function prologue and the random value assigned to the guard
is checked by the function epiloge. So the main requirement of
the guard value is that it must be a value that an attacker can’t
know. Random numbers are used as guard values which are
calculated at the initialisation time of the application which
can not be discovered by a non-privileged user.

Now it is possible to introduce a safety function model,
which involves a limitation of stack usage (see figure IV-A)
in the following manner:

« the location (A) has no array or pointer variable
« the location (B) has arrays or structures
« the location (C) has no array

Now the only vulnerable location for stack smashing attacks
is location (B). But since it is now possible to detect such
attacks by verification of the guard value, program execution
will stop immediately if damage outside the frame has been
detected.

1 arguments (A)

return address .
Frame pointer

—-——

previous frame pointer

GUARD

(random value)

(B)
(€)

arrays

local variables

Stack pointer
-

Fig. 7. Safe stack frame structure after a function is called.

In order to protect the fourth area from change, the location
of arrays and local variables is swapped. Arrays are now
placed closer to the random guard value and integers and
pointers are placed further away. Because of this reordering,
an attack on pointer variables in a function frame will also not
succeed since the location (B) is the only vulnerable location
for a stack smashing attack and the damage goes away from
location (C).

V. RANDOM NUMBERS

The computer has been designed to be deterministic and
very predictable. Hence it is very hard and difficult to produce
truly random numbers on a computer as opposed to pseudo
random numbers, where the sequence of numbers is deter-
ministic. So even with a large period of random numbers, it is
easy for the skilled attacker to guess the correct sequence, and
for some applications this is not acceptable. Instead, “environ-
mental noise” from the computer’s environment, which must
be hard for outside attackers to observe, is gathered in order
to generate random numbers. The best place for gathering
environmetal noise on a UNIX system, is from inside the
kernel. Sources of randomness must be chosen with care and
they must fulfill the following requirements:

« non-deterministic

o hard for an outside observer to measure
Examples of such sources of randomness would be:

« inter-keyboard timings

o inter-interrupt timings

« finishing time of disk requests

e mouse-interrup timings

« finishing time of net input

e 1ty activity which consists of inter-keypress timings as

well as the character which has been entered
o audio randomness

Randomness from these sources is added to an “entropy
pool”, which is mixed using a CRC-like function. This is not
cryptographically strong, but it is adequate and fast enough so
that the overhead on doing it on every interrupt is reasonable.
All these random bytes are mixed into the entropy pool, and
the routines keep an estimate of how many bits of randomness
have been stored into the random number generator’s internal
state.

Whenever random bytes are desired, they are obtained by
taking the MD5 hash of the content of the entropy pool. An
MDS5 hash is used in order to avoid exposing the internal
state of the entropy pool, since it is believed that it is
computationally infeasibale to derive any useful information
about the input of MDS5 from its output. Even if it would be
possible to analyze the output of MDS5, the output data would
still be totally unpredictable as long as the amount of data
returned from the generator is less than the inherent entropy
in the pool. For this reason, the routine which outputs random
numbers, decreases its internal estimate of how many bits of
“true randomness” are contained in the entropy pool.

OpenBSD offers various random devices producing various
random output data with different random qualities. As de-
scribed earlier, entropy data is collected from system activity,
and then run through various hash or message digest functions
to generate the output.

o /dev/srandom: Provides strong random data. If the en-
tropy pool quality starts to run low, which means that
sufficient entropy is currently not available, the driver
pauses while more of such data is collected.

o /dev/urandom: Provides random data without the guar-
antee that random data is strong. So if the entropy pool
quality runs low, the driver will continue to output data.

¢ /dev/prandom: Simple pseudo-random generator.

o /dev/arandom: This generator re-seeds an ARC4 gener-
ator with its entropy pool, and the ARC4 generator then
generates high-quality pseudo random output data.

A. Usage of Random Numbers

Since it has been explained in the previous section how
random numbers are being generated, it is time to look at
the various places where they are being used in an operat-
ing system. The TCP/IP network stack implementation has
various places where it relies on a good random number
generator in order to make it harder for an outside attacker
to spoof packets, to blindly inject data or to reset established
connections. OpenBSD assigns source port numbers randomly
whereas many other operating system vendors allocate source
port numbers sequentially which makes it a lot easier for an
attacker to find the correct source port.

The 32-bit sequence number field in the TCP header, a value
that starts with a randomly generated arbitrary integer which
then increments sequentially with each transmitted packet, is
another place where a very fast and good random number
generator is needed.

Another interesting place in OpenBSD where random data is
used, can be found in sys/kern_exec.c where the routines for the

execution of executables are implemented. Before a process
can be safely executed, one of the components which needs to
be set up, is the processes stack. Usually buffers are always at
the same place on the stack, which can be a security problem.
Stack-based buffer overflows rely on this predictable way of
how the top of the stack is allocated. Basically an attacker
overflows a buffer on the stack, the overflow overwrites the
function return address with a fixed value pointer into the
overflow buffer and execution starts. A possible solution for
this problem is to introduce a random-sized gap at the top of
stack. This method is called Stackgap and it minimizes the
chances of such a stack-based buffer overflow attack.

Since address space allocations and mappings are fairly
predictable, randomization of address space is introduced.
Each time when the system call mmap() is used, which maps
files or devices into memory, and the flag MAP_FIXED is not
specified, a random address is chosen for the allocation. So
each time a program is run, it will have different address space
behaviour. Also the addresses of objects which are allocated by
malloc() are fairly predictable and some recent exploits have
even relied on this behaviour. malloc() handles two types of
objects:

e Objects which are smaller than a page:
For such objects malloc() maintains buckets of ”chunks”
and it is possible to randomize chunk selections out of
the bucket.

o Objects which are equal or greater than a page:
In this case malloc() relies on random mmap().

When an ARPA internet protocol socket is bound to a
specific port number using the bind() system call, the system
can choose the specific port, or elect that the system chose
[7]. Normal UNIX behaviour resulted in the system allocating
port numbers starting at 1024 and incrementing. In OpenBSD
a random port in the range of 1024 to 49151 is chosen.

Another more obvious place where good random numbers
are needed can be found during the initialisation of volatile
encryption keys. Obviously a strong source of randomness
which is represented by a pseudo-random generator whose
output is not really random, but depends on so many entropy
providing physical processes that an attacker can not pactically
predict its output, is a fundamental and important basis for
many cryptographic applications.

Of course there are many more applications and examples
which rely on random numbers, but it would exceed the scope
of this paper to describe them all.

VI. CONCLUSION

Security is like an arms race, because the best attackers
will continue to search for flaws in a system and craft an
exploit which grants them an advantage. This means that it is
high time for defensive technologies which make it harder to
write an exploit [2], by making a system environment more
hostile towards exploitation without impacting well-behaving
processes. The OpenBSD team has in many ways proven
that their approach of proactive security and their “secure
by default” policy has made it a very secure and functional

operating system, ready for production usage in a hostile
environment.

REFERENCES
[1

—

Henning Brauer, ”"OpenNTPD”, http://www.openbsd.org/papers/, Septem-
ber 2004.

[2] Theo de Raadt, “Exploit Mitigation Techiques”, http://www.openbsd.org/
papers/, 2004.
[3] John Viega, Matt Messier, ’Secure programming cookbook”, Sebastapool

CA, 2003.
[4] B. W. Kernighan and D. M. Ritchie. "The C Programming Language:
ANSI C Version, second edition.” PrenticeHall, 1988.
”Security goals of the OpenBSD project”, http://www.openbsd.org/ secu-
rity.html, 2004.
Hiroaki Etoh, Kunikazu Yoda , ”Protecting from stack-smashing attacks”,
IBM Research Division, Tokyo Research Laboratory, June 19, 2000.
Theo de Raadt and Niklas Hallqvist and Artur Grabowski and Angelos D.
Keromytis and Niels Provos, ”Cryptography in OpenBSD: An Overview”,
http://citeseer.ist.psu.edu/article/raadt99cryptography.html”, 1999.
N. Provos. “Encrypting virtual memory”. In Proceedings of the Ninth
USENIX Security Symposium, pages 35-44, Denver, CO, August 2000.

[5

—

[6

—_

[7

—

[8

—

